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Asymptotic solutions of stationary patterns in convection-reaction-diffusion systems
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We study and map the possible stationary patterns that emerge in a convection-reaction-di@&in
system using a learning polynomial kinetics. We classify the patterns according to the kinetic(osmiléd-
tory, bistable, or intermediatethe instability nature of the bounded systéoonvective or absoluje the
applied boundary conditions and the system length. This analysis presents a unifying approach to various
pattern-inducing mechanisms such as DIF(@ifferential flow induced chemical instabilitywhich predicts
moving patterns in systems with wide difference of convective rates, and differential capacity patterns, which
predicts stationary patterns in cross-flow reactors with a large heat capacity. Previous studies of CRD systems
have considered only oscillatory kinetics. Nonlinear analysis, which follows the front motion by approximating
its velocity, accounts for the stability of the stationary, whether spatially periodic or other, patterns. The most
dominant state is the large-amplitude stationary spatially periodic pattern. With oscillatory kinetics these
emerge in the convectively unstable domain above the amplification threshold. The domain of absolute insta-
bility, which is determined analytically for unbounded systems, is divided in the bounded system into two
subdomains with moving DIFICI waves or stationary patterns. With bistable kinetics the large-amplitude
stationary patterns can be sustained only within a narrow subdomain but other stationary patterns, that incor-
porate several fronts upstream and an “almost homogeneous” tail downstream, can be sustained as well. With
intermediate kinetics the large-amplitude axisymmetric stationary patterns may coexist with small-amplitude
stationary nonaxisymmetric patterns.
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[. INTRODUCTION tivator and the inhibitor due to differential transport either by
diffusion or convection, respectively.
The search for chemical mechanisms that induce station- Stationary patterrformation mechanism in CRD systems
ary patterns has been a subject of intensive investigation fdfas been suggested by Kuznetsaval. [5] for a case of
the past three decades. Most mechanisms employ asqual convection rates and equal capacities, but different dif-
activator-inhibitor {Y-X) interaction with a sufficiently wide fusivities, using a Brusselator kinetic model in a domain of
difference of their diffusive, convective, or capacity proper-parameters where the corresponding lumped system admits
ties. The appropriated two-variable one-dimensional modehn oscillatory behavior. The authors have demonstrated that

may be written in the following general form: stationary patterns emerge in the convectively unstable do-
main as the system response to the permanent perturbations
LeY+V1Y,—D1Y,,=f(Y,X), introduced by the boundary conditions, which differ from the
steady state solutions. Almost simultaneously we have pro-
Xi+V,oX,—DyX,,=a(Y,X), (1) posed the same idea for a CRD system when the activator

capacity is sufficiently large (1), while both the inhibi-

subject to boundary conditions at the inlei0) and outlet  tor and activator flow at the same rd&-10]; the inhibitor
(z=L). The seminal work by Turing1] showed that pat- diffusivity is not crucial for the establishment of these pat-
terns may emerge in reaction-diffusion systefns., with  terns and it can be set to zero. We suggest to name this
V;=0) whenf(Y,X) is autocatalytic and the inhibitor diffu- phenomenon as the differential capacity patt@cP).
sivity D, is sufficiently larger tharD ;. The CRD models described above can be grouped into

Pattern formation in convection-reaction-diffusi@®@RD) two main categories. In the first one the auth@Refs.[11—
systems has been a subject of intensive investigation for pa48] following Ref.[5]) considered a case of equal convective
ten years. In a series of works Rovinsky and co-work®r3]  velocities and capacities in a domain of parameters that ad-
showed that this class can genenatgving patternsvhen the  mits an oscillatory behavior in the corresponding lumped
activator convection rate is sufficiently small when comparedsystem {f,=f,X,=g,Le=1); pattern selection depends then
with that of the inhibitor ¥;<V, with Le=1 or V,=V, on whether the system is absolutely or convectively unstable,
with Le>1 [3]) and termed this mechanism as differential while the type of bifurcationgsub-critical or supercritical
flow induced chemical instabilityDIFICI). The DIFICI pat- depends on the kinetic model. In the second group the au-
terns emerge in the convectively unstable metiiabe ex- thors considered a system with either different convective
plained below and, contrary to the Turing case, the ratio of velocities[14,15 or with different capacities of the compo-
diffusion coefficients is not essential for this mechanism. Shnents[6—8]. The employed methodology involved the con-
vartsman and Sheintudi#] simulated moving patterns for struction of neutral curves which bound the domain of stable
system(1) with V;=0,D,=0, and Le>1. Both Turing and homogeneous solutions. Note that for a first group the neu-
DIFICI instabilities arise from spatial decoupling of the ac- tral curve cannot be constructed using the velocity as a bi-
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furcation parametdisee remark after Eq17) below]. In the We consider a full model with a learning polynomial ki-
studies of the second group the effect of transition from abnetics:
solute to convective instability has not been considered yet.

The source of differences between the various models Leﬁntvﬁ— &2—Y=f(Y X)= — Y34+ Y+ X
stems from different interests. The motivation for our studies at 9z 572 ’ ’
is the analysis of catalytic reactors, which are characterized
by a large heat capacity, by an immobile phase and by one or aX ax
two fluid phases. In previous works we employed a cross- 1 TV =Y. X) = y(Xy=X) = BY, 2

flow reactor model with a first-order Arrhenius kinetics,

which is generic to studies of commercial react]. In subject to the Danckwerts’ boundary conditions

such kinetic models the lumped system may admit multiple

steady state or oscillatory solutions with a variety of phase-  Yz(0)=V[Y(0)=Yi], Y, L)=0, X (0)=Xi,. (3)

plane dynamics including simple oscillations around one or,

several steady states and complex oscillations in the case ) ; ; . NN

two consecutive reactiond7]. The related distributed CRD lon, S0 that the_ pure Turing mechgmsm IS priort

systems may exhibit a rich plethora of patterns includinge“mmated' A similar model, but withf(Y,X)=BDa(1

stationary spatially multiperiodic patterns or spatiotemporal X)h(Y) = 7, (Y= Yy),9(Y,X) = Da(1=X)h(Y) = (X

regular or even chaotic patterf@ 10, We have shown that _ *w):N(Y) =exfe¥/(e+Y)], where DaB, yy,y,, ande are
constants, was employed in our studies of OB6R8| and it

the emerging stationary spatial patterns in the limit of large . . .
can be classified according to that of the related |umpeaiescr|bes a cross-flow reactor where the_ feed is eve_nly dis-
mixed system. The variety of the system behaviors hinders Bersedtr?longbt.he rtleactor.. -Il—klle c?mmorgjatllk':y of beha\'/Al\or; be-
comprehensive analysis that elucidates the essential featurieen the cubic polynomial kinetics and the generic Arrhen-
of the model. ius kinetics was demonstrated in a variety qf reactor sy;tems
The purpose of this work is to derive asymptotic solutionsSUCh as the .plug—flow reactpt8] or a §atalyt|c system w ith
global coupling[19]. The Danckwerts’ boundary conditions
e common in models of chemical reactors, and allow the
stem to converge to one of two common reactor asymp-

te that the diffusion term is neglected in the second equa-

to present a comprehensive analysis of possible patterns.

that end, and in order to derive analytical results, we use het A i tired tank tor CSTR lua fl
a learning polynomial kinetics that admits oscillatory as well otes(a continuous stirred tank reactor, » Or a piug flow

as multiple solutions. Note that previous studies employe(ﬁegcmr’ EFR In ordfr to S|m_|gll|fy the follol;/wkr]]g gnalys;é(to
oscillatory kinetics only using the Brusselator model or'educe the types of a possible system be i setX,,

Gray-Scott kinetic§5,11-19. We have constructed neutral =0. . . .

stability curves for each of the homogeneous steady state 'N€ solutions of the right-hand side of Eqs2)
solutions of the corresponding unbounded system. To anad ( Ys:Xs)=9(Ys,Xs) =0] are the asymptotic homogeneous
lyze the pattern selection the absolute instability thresholdSelutions of the problem. Foy=0 only a single steady state
are derived both for the unbounded and for the boundedYso=Xs0=0) exists. Fory#0 with <y system(2) pos-
systems. Our results show that bistable kinetics, which is §6SSes two additional steady statés: =+ V1-a,Xs. =
common feature to mangespecially exothermic and acti- —@Ys=, Wherea=p/y. . . o
vated reactions, may introduce a rich plethora of patterned The lumped modelVe begin our analysis by determining

solutions. the behavior of the corresponding mixed system

The structure of this work is as follows: in the following dy dx
section the mathematical model and its asymptotes are for- Le——=f(X,Y), —=g(X,Y). (4
mulated, linear analysis and bifurcation diagrams for an un- d dt

bounded system are presented in Sec. Ill. Nonlinear analysis . . . . .
based on the examination of the front motion is conducted i he Jacobian fT‘a"'X of the linearized equations evaluated at
Sec. IV, and in Sec. V numerical simulation of a bounded? Steady state is

system are compared with analytical predictions. (

(-3Y2+1) 1

J= ) _ y> : 5

Il. MATHEMATICAL MODEL AND ITS ASYMPTOTES

The corresponding phase planes defined by the null curves
X,Y)=g(X,Y)=0 exhibit an oscillatory [Fig. 1(a], a
istable[Fig. 1(b)], or anintermediatg Fig. 1(c)] behavior. A

In this section we will consider a two-variable one-
dimensional model that describes the spatiotemporal syste
behavior and which will be referred to as the full partial ; - X T
differential equation(PDE) version of the system. Two rel- standard linear staplllty analy5|s shows that the null trivial
evant ordinary differential equatiof®DE) asymptotes can State {'so=Xs=0) is stable in a range 1/he<l<a. The
be easily derived from it: the first describes the temporatwo other steady statesr(. ,Xs.) are stable ifa<min{3
behavior of the corresponding mixed system, i.e., lumpedt+Ley/3,1}. Note that increasing Le stabilizes the system; in
with respect to the space coordinate, while the second ddhe notation of catalytic reactors Le is the ratio of solid to
scribes the steady state solutions of the distributed systemfluid heat capacitiesLewis numbey.

036207-2



ASYMPTOTIC SOLUTIONS OF STATIONARY PATTERS. ..

FIG. 1. Typical phase planes showing &, X) =0 (solid line)
andg(Y,X)=0 (dashed lingsnull curves for the cases of oscilla-
tory (a), bistable(b), and intermediate kinetick). X; mark theX
values at thath front position,X* is the limit value. Dotted lines

with arrows show the oscillatory cycles. Dots mark the steady state

solutions.

Stationary solutions in an unbounded systdim.under-

stand the stationary patterns admitted by an unbounded sys-
tem (2) let us consider the corresponding system that de-

scribes the stationary spatially distributed solutiding.,
Yl gt=9X/gt=0)

dp

dX 1
a4z vIxXY), o=p =X Y)+Vp. (6

dz V

Linear stability analysis applied to E(6) reveals that a
bifurcation to a spatially periodic solutions occursvat V
with a spatial wave numbée=Kg:

(@)

i A
kS:Tr, V(Z): _122+ P,
0
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FIG. 2. Typical bifurcation diagrams of stationary solutions of
ODE system(6) for an oscillatory[(a), a=1.2], bistable[(b), a
=0.5], and intermediate kinetidgc), «=0.8]. Solid and dashed
lines denote stable and unstable solutions, respectively. Points de-
note the Hopf bifurcation of the nullHy) and upper/lower i ..)
steady states, stars (b) denote the loss of stabilit$, crosses ir{c)
are branch points which coincide with the loop poiltd., and

wherej;,, Tr andA are the elements, trace, and determinanfriangules in(c)—the Torus bifurcatiorT. (Le=1008=0.2).

of the Jacobian matrix5). Thus, the critical parameters for

the null steady state are

Y(a—1y)

2 _
VOO_ k2
00

The necessary condition for the bifurcation to exist is
y<min{e,1}.
For the other steady states the critical parameters are

2y(1-a)

k(Z)::k(Z)O_?’(l_a)l Vg::7+ 9

and the necessary condition for the bifurcation to exist is

2+
Ty<a<1.

The bifurcation diagrams discussed below will be used as
a guide for the possible steady states of the full PDE system
(2) but their stability will change. Thus, the stability features
described below are specified for the form of E@. and
denote stability with varying. We refer to a bifurcation to a
spatially oscillating solution as a Hopf bifurcation, even
when it may occur from an unstable state.

For an oscillatory kinetics (@>1) only a single(null)
unstable steady state exists, and it admits a single superecriti-
cal Hopf bifurcation atv=Vy, [Hy, Fig. 2a)].

For abistablekinetics (@< %) the bifurcation diagram is
composed of two branches of unstable upper and lower
steady states and a stable branch of the intermediate solution
which undergoes a supercritical Hopf bifurcationvat Vg
[pointHy in Fig. 2(b)]. This oscillatory branch looses stabil-
ity at a certain pointS as it approaches the upper/lower
steady stateéwe did not trace this branch further

In the intermediate domain ¢<a<1) the unstable
upper/lower steady states undergo subcritical Hopf bifurca-

The (spatially oscillatory branches, that bifurcate from the tions at V=V,. [point H., Fig. 2c)]. The emanating

homogeneous solutions at poirtg, were traced numeri-

branches of asymmetric oscillations are unstable until the

cally by means of the continuation and bifurcation codeTorus bifurcation[points denoted by at the upper oscilla-

AUTO [20] (Fig. 2.

tory branch, Fig. &)] and become stable until the loop point
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L, where they merge. The stable branch of the null solution, (a) (b) (c)
as in the previous case, undergoes a supercritical Hopf bifur- 1.5 | —
cation. The emanating branch of axisymmetric stable oscil- Voot
latory solutions crosses the oscillatory branches that are born 1 \el

from the upper/lower steady states at a branch @iwhich
coincides with the loop pointL, Fig. 2c)]. All oscillatory
branches undergo period-doubling bifurcations, but we did
not trace these branches.

>
05

0

0 Kk 1 0 Kk 1 0 Kk 1
I1l. LINEAR STABILITY ANALYSIS OF THE UNBOUNDED

SYSTEM FIG. 3. Typical neutral curves for the nukolid line) and the
upper/lower steady statdglashed ling Open circles denote the
amplification threshold of stationary patterfiggs. (8) and (9)].
Casega)—(c) and the corresponding parameters as in Fig. 2.

We will start with a linear analysis of unbounded system
(2) in an infinitely long region. Denoting the deviation from
the basic steady state solutibl={Xs,Ys} asu={x,y}, we

obtain the following linearized equations: Here the denominator is a characteristic function which de-

p PR fines a dispersion relation of the system, while the numerator
y N_TY . i depends both on the system parameters and the initial pertur-
Le_-+V 2 Tl X : :
at 9z gz bations(their Laplace transformsTo that end we assumed
that the denominator has no singularities as a function of
ax ax ) complex variablesr, k.
St TV, Ty Tl (10 Nontrivial solutions exist with a set ofg{,k) obeying the

dispersion relatiorD(o,k) =0:
We ose that the initial conditions are
SUppos i tions Leo?+ o k2~ j 11— Lej pot iVK(Let+ 1)1+ A —K3(V2+ ] )

YIi=o=Fo(2), Xli=0=00(2), (11 +iVk(k2—Tr)=0. (16)

where the functionsfo(z) and go(z) decay rapidly forz  The pifurcation condition for instability Re=0 with real

— o0, We will search a solution of Eq10) in the form of the spatial wave numbers (lka=0) obeys the following rela-
normal modes tion:

u(t,z)=uge” k2, (12) Q2(j k2 — A) +j ,k2V2(Le—1)2(k2—j17) =0,

Following the standard approach, we can perform a Laplace Q=K2—j11—L&j . (17)
transform of systeng10) with respect to the two variables
andt. The corresponding forward and backward transforms\ote that with Le=1 the onset of instability does not depend
are on the flow rate.
Neutral curvesFor a case L& 1 we can construct neutral
W, (oK)= Jocefu'tdtjw u(t,2)e "%z (13) curves using the velocity as a bifurcation parameter:
0 —w

2/ k2—A
—jaALe=1)%(kK*—jk?
1 ioo+so © ) e . .
- ot ikz _ The stability analysis of the homogeneous solution of the
ut=--— e daﬁmw"'ke dk, So=Revo.  tributed system with/—0 agrees, of course, with the

(14) corresponding results of the lumped modlEhs. (4)] dis-
cussed above.

Here we assume that the perturbations grow not faster than For the null steady state ane>1 the neutral curve ac-
exp(st), so that the integral in the right-hand side of ELR) quires a minimum[at V,,, k,; Fig. 3(@] and traveling
converges, and in Eq14) the integration contour in thee  waves can be excited only with>V,,. When a<1 the
plane(parallel to the imaginary axiss located to the right of neutral curve is a monotonically increasing curve emanating
all singularities of the integrand. The integration contour inat the critical poinkk=A/]j = /(1— a [Figs. 3b),(c)]. For
the k plane should be the imaginary axis. The componentsyl| V>0 the homogeneous state is unstable and can exhibit
W, can be found from the transformed systétd) in the  traveling waves with a finité.

following form: The two other steady statég. are stable for alV in a
domain 0<a<<2/3. The neutral curve can be constructed in
W= h(a,k) (15) a domain 2/3X a<1 and it acquires a minimum in similarity
7K D(o,k) to the case of the null steady state with>1 [Fig. 3(c)].

036207-4



ASYMPTOTIC SOLUTIONS OF STATIONARY PATTERS ... PHYSICAL REVIEW E 68, 036207 (2003

(@) (b) © (a) (b) (©)

iy

Imk

0 Rek 0 Rek 0 Rek

FIG. 5. Schematic diagrams showing #ieoots behavior of the
k k dispersion relatior{16) with critical Rer=0 for a case of a stable
00 (a), absolutely unstabléb), and convectively unstablg) system.

- initial perturbation grows unbounded in time, at any fixed

point in the laboratory frame. The effect of permanent per-

0 0 0 turbations that are applied at the boundary of a bounded

0 10 10 1 system is closely related with the type of instability of the
¥ v v corresponding unbounded systésee discussion at the end

FIG. 4. Typical bifurcation diagrams in th&/(y) plane(upper ~ Of this section. _ -
row) mapped by the following lines: The stationary pattern thresh- [N order to analyze the type of instability of the un-
old of the null and upper/lower state¥¢,, Vo , solid lineg. The ~ bounded systen@2) it is necessary to study the asymptotic
locus of minima of the neutral curvieV,,, dashed-dotted line in behavior of the solutioru(t,z) defined by Eq.(14) at t
(@)]. The absolute instability thresholds for an unboundi¥q, —oo, We will follow an approach proposed in RgR1]. If
dashed line in(@] and bounded V2, dotted line in(a)] system. for a certainV each of the complek-roots of the dispersion
Dotted lines in(b) and (c) denote the boundaries of the oscillatory relation D(o,k,V)=0 with Res=0 and varying Ino be-
domainsV, andVg,in (b) andVg.. in (c). The boundaries marked longs to either the upper or lower complekalf planes, then
by dotted lines in(@—(c) were computed numerically. The lower the system is stablgFig. 5a)]. If one of thek-roots crosses
row presents the critical wave numbers of the stationary pattern fofhe real axis, then the system is unstafole can find a root
the null and upper/lower statesqg,ko-). Large-amplitude spa- of dispersion relation with Re=0 and R&=#0). Note that
tially periodic patterns exist in domaiiii ) or (i '), moving patterns iy an unstable system the perturbations are spatially ampli-
in (iv), small-amplitude patterns itvi), see text for other behaviors. fiaq (Imk of at least one of thé& roots changes the sign
(Parameters Le; as in Fig. 2. The instability is convective if we can construct the
contour for the inner integral in Eq14) that will round the
singularities of the integrand, , defined by Eq(13) [Fig.
5(b)]. Such manipulation is possible if tHecontour is not
pinched between two poles that approach the contour from
o=0, Imk=0. (19 opposite sides and merd€ig. 5c)]. So the critical case
implies the existence of a double root of the dispersion rela-
Applying these conditions to the dispersion relatid®) we  tion [or a branch poink=k,(0o},)] that satisfies
obtain the critical parametefg,,ky, corresponding to the
amplification threshold of stationary perturbations. It obvi- dop
ously coincides with the Hopf bifurcation point of the D(oy . kp) =0, d—kb=0. (20)
lumped systeni6), i.e., it is defined by Eq(7). The corre-
sponding critical points are marked on the neutral curves byrhe critical velocityV,, corresponding to Rg,=0, defines
circles (Fig. 3). The critical parameters as functions of ki- a transition from the convective to absolute instability. Sys-
netic parameters are shown in Fig. 4. For the null steady statem (20) was solved numerically. The calculated values of
the bifurcation point exists in a range<min(l,a). For the V, are shown in Fig. &) (dashed lines
other steady states the amplification threshold exists in a do- The analysis presented above was conducted for an un-
main (2+y)/3<a<1. Note that the wave number of the bounded system. It may be applied for a bounded system if
null solution kqq is larger, while the critical velocity is the reflection of exciting waves from the boundaries may be
smaller than the corresponding values of the lower/uppeneglected(i.e., for time intervals that are smaller than the
steady stateskg« ,Vp+). time propagation of the a signal along the systeim gen-
The type of instability Now we have to determine eral, the spectrum of wave numbers in a bounded system is
whether the instability is absolute or convective. An instabil-finite and is defined by boundary conditions. However, for
ity is convectiveif a small perturbation propagates forward sufficiently long systems the dispersion relation depends on
as a wave packet growing in size, but at any given locationntrinsic properties of the system itself and does not depend
the disturbance from the steady state decays with time ason the applied BQboundary conditions[23]. The stability
—o [21,22. In contrast, the instability i@bsoluteif the  of a bounded system reflects the stability of the correspond-

The amplification threshold of stationary perturbations
The condition for stationary patterns to emerge is
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ing unbounded system as folloW&3]: If the unbounded
system is absolutely unstable, the bounded one will be glo-
bally unstable, while if the unbounded system is convec-
tively unstable the bounded one can be either unstable, or
stable. Thus, in the bounded system witlabove the ampli-
fication threshold of stationary perturbatioftsq. (7)], the
patterns will be stationary if the unbounded system is con-
vectively unstable, while if the unbounded system is abso-
lutely unstable, one can expect to find complex patterns com-
posed of an upstream zone with several stationary waves and
moving waves in the downstream zone.

IV. PHASE-PLANE ANALYSIS AND FRONT MOTION

To complement the linear analysis above and the study of

possible steady solutioriBig. 2) we present below an analy- Zf ] z
sis that follows the fronts iry and their dependence on the
interaction withX profile, capitalizing on the slow front mo- FIG. 6. Schematic profiles of the state variab¥ég) and X(z)
tion and the fasK adjustment. The analysis is valid for wide for a stable spatially patterned st#&, corresponds to phase planes
separation of fronts, implying<1. shown in Figs. 1a),(b), and a single front pattertb).

We start with the analysis of front i for fixed X (say
X=Xp). That is possible in the domain wheFgY,X,) is Y, +VY,~Y,= = Y3+ Y+ X(Y)=F(Y). (23

bistable and we can find two pseudohomogeneous solutions

away from the inlet and a front solution that separates thdo analyze the system we distinguish between several cases:
two stable steady states. Imagine the flow directed to th&he effect of convection is expressed in the flow rdtand

right and an ascending front separating lgwdownstream the effect of kinetics should be classified according to the
(left) from high-Y upstream. The front positioZ; is de- possible homogeneous steady solution that is established

scribed by g=t/Le) away from the feedF(Y¢)=0].
Oscillatory kinetics withy=0. To simplify analysis even
de/dT:_C(Zf,Xo) _ _ _ 4 H
further sety=0 so thatX(z)=X(0)—(B/V)[iYdZ . This
=—Cuy_0o(Xo)—(Cy_o—Cuy_o)+V, (21 is a typical behavior within the oscillatory domain. Now con-
' ’ sider a family of fronts with positions &;;,Z;,, ... and
where a positive front velocit€ implies an expansion of the the correspondinX values ofX;,X,, ... [Fig. 6@]; the

high-Y domain.(In the general case we should allow for the first front and the other odd ones are assumed to be ascend-
dependence o€ on X and on parametexsThe expression ing, i.e., separate a low-domain on the left from a high-
incorporates three terms: the first is the front velocity in andomain on the right, while the othefsven are descending
unbounded system with no convectio€.(y-,) and the fronts. Their positions, ignoring the interaction between the
other two show corrections that we have introduced for thigronts and interaction with the boundaries, are described by
velocity (Ref. [18]): The effect of convection is to push the
front at the fluid velocity. The other effect, due to boundary
conditions[the second term in Eq21)] decays exponen- .
tially with the d|stan_ce and is |gn(_)red for now. For fixd X(Z1) =Xy =Xo— éf ledz’c, (243
= X, the front velocityC.. \,_o(Xy) is monotonically chang- Vo

ing with X, or any other parameter; for a cubic polynomial

de]_/dT: —C(X(Zfl))-i-V,

function F(Y,Xo)=—Y3+Y+X, and with smallX, it is dZsp/d7=—C(X(Zs2)) +V,
C...v=0(Xo)=3Xo/+2. Thus,C.. y_o=0 only for a certain 5
set of parameters and typically we do not expect to find X(Zep)=Xp=X;— = fZdec. (24b)

stable stationary fronts with or without convection. The sta- V)2
tionary front, which exists iC.. y_o=V, is simply a bound-
ary between fronts that propagate upstream or downstreanfsince for the first fronty <O on the left domainX increases
We turn now to study the effect of varying To simplify ~ with zand the position of the first front is stable: perturbation
the analysis assume thétis responding fast (e 1) and its  of the front position to the left encounters low¥r which
balance is assumed to be in steady state. Its solution then &courage expansion of the cdldw-Y) domain, while per-
turbation to the right encounters an opposite behayvegall
- _ B _ Z that X responds instantaneouglyThe stability can be veri-
X=X(0)e V4 X (1—e™7Y) - v® yZNJO e Vydz, fied mathematically by examinindC/dZ;,. Small changes
(22)  inVwillinduce small changes in the front position. A similar
analysis applies to the next front, showing that it is stable

and the system is described by over a wide domain o¥/’s.

f1

036207-6



ASYMPTOTIC SOLUTIONS OF STATIONARY PATTERS . .. PHYSICAL REVIEW E 68, 036207 (2003

To a first approximation, ignoring the effect of gradient in the system. This analysis explains the domain of stationary

X on C, the fronts are stationary when fronts at lowy and lowV [Fig. 3a)].
Excitable kinetics withy>0 and X,# 0. A similar analy-
C(X)=V sis can be applied in this case, where the phase plane corre-
| 1

sponds to an excitable system. We will not pursue it here.

which allows us to calculate analytically; values at the V. NUMERICAL SIMULATIONS
front positions[Fig. 1(@) marks X;,X, and Fig. 6a—the N
correspondingZ;;]. For an ascending and descending fronts e want to show now how the transition from a homoge-
we find X, ,= —X; for this symmetric cubic kinetics. For neous solution to statiqnary p_atterns with mcreas\n_gs
smallV, asC is linear withX (C= xX,), the stationary front ~affected by the type of instabilityabsolute or convective
position varies likeZ;;~V2—«kVX,. (As V—O0 the front by the BC and by the reactor length. To that end we plot
interaction with the boundary cannot be ignored and the patifurcation maps in the\(,y) plane for a set of parameters:
tern will collapse: note that the bifurcation to a pattern solu-that corresponds fo oscillatory, bistable, or intermediate ki-
tion Vgy—0 asy—0). For largerV, however, the front ve- netics. Atypical bifuication map was c_onstructed by drawing
locity that corresponds 8 value at the limit poinfX*, Fig.  the following analytically computed lines/=Vp(y)—the
1(a)] will be exceeded; yet even under these conditions théocus of minima of the neutral curveVo(y) and
stationary front is sustained but now it moves as a phas¥o=(7)—the stationary pattern threshold for the null and
front rather than a trigger frorisee Ref[24] for the distinc- ~ UPPer/lower states, respectively. Also drawrti) were several nu-
tion between trigger and phase fronts merically computed lines such &(y) andVy(y)—the ab-
Thus, under certain conditions, and withst@, system Solute instability thresholds for an unbounded and bounded

(2) sustain stationary-periodic patterns. F¥(0)=0 the  System, respectively.

problem is symmetric and the wavelengttZ {—Z;; We choose Le100 and set the reactor length to

=2Z,) could be computed analytically. =100 in most of simulations in order to resolve the structure
Oscillatory kinetics with0<y<1 and X=0. The ap- of the emerging patterns; several rumsarked in the tejt

proximate analysis can be extended alsoyfor0 and it will ~ Were conducted with =200.

be useful to analyze the pattern on thé,X) plane [Fig. Numerical simulations of the full PDE syste(8) were

1(a)]: The section upstream from the front is described bycarried out by means of an implicit finite difference scheme
Eqgs.(22) and(23) and the profile oK is ascendingalthough ~Pased on the method of fractional sté@s].

not linearly; within the oscillatory domain, when the null  Oscillatory kinetics(a>1). In this case the unbounded
state {Ys=X=0) is the only homogeneous state, the frontSystem(2) possesses a single homogenedusll) steady
(first) will become stationary at a certain position whereStateé, which is stable in a domain of low flow rates and
C(X(Z;,))=V, and we follow the same procedure as earlierundergoes a supercritical bifurcation to moving waves with
in determiningZ;, etc. AgainZ,— Zs; =27, is the wave-  Increasingv. _

length and we will find periodic stationary solutions for ll The stationary patterns threshdly, is tangent tov, at
exceeding a critical value. y=0.7; the corresponding wave numbey, coincides with

Within the bistable domaifFig. 1(b)] we always find two ~ Km(%), it exceedsky, in the domainy<0.7[Fig. @] and is
stable homogeneous solutions with no fronts where the sysmaller tharky,(y) in the domainy>0.7. The absolute in-
tem, far from the entrance, asymptotically reaches one oftability threshold of an unbounded systew,X exists in a
these homogeneous steady solutipRiy. 6(b)], depending domain of smally and is terminated at the intersection point
on the inletY value. Aside from these we can find other With the V() line. For a bounded system the numerically
solutions that incorporate fronts. The behavior should baleterminedVy line varies withL and with increasing- it
classified into two situations. tends to the asymptotic valug, of unbounded systerfsys-

(a) At low V, when theX value that sustain a stationary tem(20)]. These lines divide the\,y) plane(Fig. 4) to the
front does not exceed the steady state vdldg(V)<X,  following domains and solutiondhe same notation is em-
Fig. 1(b)] we can find stationary periodic solutions, identical ployed below and in Fig. 4
to those described aboyeee Fig. 6a)]. With proper initial (i) The homogeneous solution is established belgyy)
conditions, however, we can also find solutions that incorpoand moving wave cannot be excited; Yf,#0 or X;,#0
rate one, two, or several fronts upstream and a homogeneotien the solution exhibits some adjustment at the inlet sec-
solution downstreanmisee simulated patterns in Fig@B to  tion due to the boundary conditions.
be discussed belowNote that these conditions imply adja- (i) Pseudo homogeneous patterns are established,for
cent fronts and we have ignored front interaction. <V<V, and outside the absolute instability domain; it is

(b) At large V, whenX;(V)>X,, such fronts are washed similar to domain(i), but transient moving waves can be
out of the reactor and the system approaches the asymptotixcited, before being gradually washed out of the system.
cally homogeneous state: To argue that point consider thbote that numerically obtained critical velociti®&g practi-
front in Fig. 6b); the behavior upstream from the front is cally coincide with analytical predictions for the unbounded
qualitatively similar to that described above in Figa)p but  system(8).
the X profile does not attain the stationary conditidh (iii) Stationary patterngsimilar to Fig. 7c)] are estab-
= X;. Consequently, the front propagates upstream and exilsshed for most of the domain witki> ma>{V0,V§]. The cal-
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affect only the length of the boundary layer. With appropriate
choice of initial conditions we can induce complicated pat-
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(b)

‘ terns composed of two zones with slightly oscillating quasis-
tationary patterns in the upstream zone and moving waves in
the downstream zonjg=ig. 7(d)]. The boundary between the
wave packets is drifting and over a long time one of them
(depending on the BCsuppresses the other.

With time-dependent BC it is possible to transform the
sustained stationary patterns into moving ones and vice versa
(let during a certain time interval we impo3g, or Y;, that

(a)
slightly deviate fromXg, Y, then the system will exhibit

(c) (d) zigzag patterns; if in the following time interval we will
chooseX;, or Y, that differ significantly fromXs, Y, then

the patterns will be transformed into stationary ofEw.
7(d)]. Moreover, with appropriate stepwise changes in BC it
is possible to generate complicated patterns composed of al-
ternating stationary, oscillatory, and moving wave zones
propagating in opposite directions.

With increasingL (or varying «) we expect to find a
subdomain adjusted to the lower bounddryy(y)] for
which stationary patterns cannot be sustained at all, indepen-
dent of the BC. However such simulations are very time

z consuming and are out of the scope of the present study.

FIG. 7. Typical solutions presented as a spatiotemporal gray- Bistable kinetics(a<2/3). In this case the unboundeq

scale pattern oY for the case of the oscillatory kinetic&) moving system(2) possesses three homogeneous steady states: the

waves[domain (iv) in Fig. 4@], (b) zigzag patterr{imposed by utp%(Tr ?‘nd Iovvter fatrﬁ Séable .everﬁ\.,;/hi;]e amljl ar? t9'°b‘f""y
small perturbations of BC, domaigv) in Fig. 4]; also formed in stable for most of the domain, while the null solution 1S

domain (v) are () stationary patternglarge perturbation of BG unstable for alr\_/zo. '_I'he only other stable state is a station-
and (d) transient patterngin response to a change of BCa ary pattel'm which exists for a bounded system between the
=1.28=0.36;V=0.65(a), 0.85(b—0d. In (d) the coordinatest(z)  lower [Vq,, close toVy,, a lower dotted line in Fig. @)]
are rescaled for convenience. and the upper boundari¢¥g,, an upper dotted line in Fig.
4(b), corresponds to stat® in Fig. 2(b)]; these boundaries

culated spatial amplitudes and the periods of oscillations arevere calculated by direct simulations. Note that while the
in a very good agreement with the corresponding values obaull steady state is absolutely unstable in the unbounded sys-
tained by means of the continuation approg2®l. Note that  tem (for V<V,g), the bounded system is convectively un-
for large V the dispersion term becomes insignificant with stable only due to the existence of the other stable solutions.
respect to convective transport, and the period of spatial osFhese form the following domainfFig. 4(b)] which are
cillation varies linearly withV. (The space coordinate can be marked in similarity to those of the previous case:
rescaled ag/V and the dispersion term in the transformed  (ii’) For V<Vh,andV>VY, the system attains one of the
coordinate is multiplied by 1/2). pseudohomogeneous steady states. Axisymmetric waves can

(iv) Propagating waves with a narrow “boundary layer” be excited during a transient process, but they are washed out
near the inlet{Fig. 7(a)] are excited forV,<V<V,<V2  upstream with smalV/,y and downstream for largé, y.
(i.e., within the absolute instability domairThese waves are (ii ) Stationary patterns with spatially periodic or other
exactly the self-sustained DIFICI patterns. For relativelystructures can be sustained <V <\V},. With appropri-
small deviations/—V, the calculated wave veloci@,, and  ate choice of the initial conditions it is possible to design
the spatial wave numbef are in a good agreement with patterns composed of several stationary fronts in the up-
analytical predictions for the unbounded system, using th&tream section and one of the stable steady state in the down-
parameters at the minimum of the neutral curvk ( stream zongFig. 8a)]; these were discussed in the preced-
=K, Cw=om/Km)- ing section.

(v) For V0<V<Vg the system behavior is highly sensi-  In a relatively narrow sub-domaiﬁV00<V<V{)O, not
tive to the applied BC showing either moving or stationarymarked in Fig. 4b)] the system attains a pseudohomoge-
waves: For small deviations of the boundary valu¥g, (or  neous state, similarly to domain ii, but during a transient
Y;,) from the null steady state the system exhibits movingprocess the excited moving waves are transformed into spa-
waves, which can be significantly affectéehodulated by  tially oscillatory patterns which, in turn, are eventually ter-
BC forming a zigzag structurfFig. 7(b)]. With relatively — minated[Fig. 8b)]. Probably the wave length becomes too
large (yet, fixed perturbations at the boundaries the systemsmall to counteract the interaction between the nearest fronts.
exhibits stationary patterns composed of spatially periodic Intermediate kinetic§2/3<a<1). This case is the most
waves over most of the reactifig. 7(c)]; the applied BC complex among those considered and we found two kinds of
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FIG. 8. Typical spatiotemporal solutions presented as a gray- (©)
scale pattern o¥ for the bistable kinetics case showif® regular > 0
stationary patterngdomain(iii ) in Fig. 4(b)] and(b) transient pro-
cess in a subdomain below it leading to a gradual termination of
stationary wavesae=0.5,3=0.2; V=0.4 (a), 0.375(b). -1 .
0 100 200
spatially periodic solutiongaxisymmetric or ngtas well as z

the pseudohomogeneous solutions. Of the three steady statesg|g_ g, Typical solutions for the case of the intermediate kinet-

the null solution, as in the previous case, is unstable for alics in the domain of coexistence of different types of stationary
V>0, while the upper/lower solutions loose stability via a patterng(vi), Fig. 4c)] showing(a) a small-amplitude nonaxisym-
Hopf bifurcation and become convectively unstableVat metric stationary patternb) a similar profile with an increasing
>V« . The thresholds of stationary patterns exist in a do-downstream-amplitude, an@) a transient process leading to for-
main y<a for the null steady state and in a domajn  mation of large-amplitude axisymmetric patterns=0.8,6=0.2;
<3a—2 for the upper/lower solutions withljo<V,- [Fig. V=1 (a), 1.1(b,0; L=100(a,b, 200(c).

4(c)].

As in the previous case we found domdiiri), where the large-amplitude axisymmetric spatial oscillations. These
system admits a pseudohomogeneous solution and can exaves propagate upstream and conquer the whole spatial do-
hibit transient waves of axisymmetric amplitudes. Stablemain forming eventually stationary spatially periodic pat-
spatial pattern states are sustained WithVy,. In domain  terns of the same type as when the null steady state is used as
(ii") (Vpo<V<Vy.) complex “designer” patterns, com- the initial condition[the profile shown in Fig. @) illustrates
posed of several stationary fronts upstream and a homog#he transition process: large amplitude waves at the down-
neous steady state downstream can be sustained. They costream zone propagate upstrdam
ist with stable pseudohomogeneous solutions. In dorfi@jn
(above region vi, see belgwtationary spatially periodic pat-
terns are the only stable solutions of the system. Note that
contrary to the case of bistable kinetics, domaliiiy and The mechanism of stationary patterns formation in the
(iii ") have no upper boundaries with increaswig CRD (convection-reaction-diffusiorsystem with large sepa-

The more intricate system behavior takes place in a relaration of time scales (L2 1) is analyzed for a learning cubic
tively narrow domain(vi) above the amplification threshold kinetics. The study revealed that pattern selection depends on
of nonaxisymmetric pattern¥y. . Just aboveVy. with V. kinetic model(the type of the phase plane of the correspond-
<Vjy. [dotted line in Fig. 4c)] the system exhibits station- ing mixed mode), the type of instability, the applied bound-
ary spatially periodic patterns with small-amplitude oscilla-ary conditions, and the reactor length.
tions around the corresponding steady stHEes. 9a)]. With For oscillatory kinetics stationary spatially periodic pat-
increasingV the spatial periodicity is lost and the amplitude terns emerge in theonvectivelyunstable domain above the
of the oscillations becomes space dependgriws down-  amplification threshold/=Vy,. The domain ofabsolutein-
stream, Fig. @)]. With the following increasing/ the pat-  stability is divided, in the bounded system, into two subdo-
tern selection becomes sensitive to the reactor lehgfor ~ mains: one with moving DIFICI waves and another with
moderate. (<100 with y=0.167x=0.8) and with increas- stationary patterns. The boundary between the two varies
ing V, the zone of small-amplitude spatial oscillations iswith the boundary conditions imposed and the system size.
shifted downstream and for very larg¢é we obtained For bistable kinetics the stationary patterns with spatial
pseudohomogeneous solution, defined by the applied BQscillations around an intermediate steady state can be sus-
With increasingL the stationary patterns of varying spatial tained within its convectively instability domain in a
amplitude around upper/lower steady state become unstabi®unded region far from the basins of attraction of the ho-
and switch in the downstream zone into moving waves withmogeneous stable states. Other stationary patterns, that in-

VI. CONCLUDING REMARKS
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corporate several fronts upstream and an “almost homogewith a variety of phase-plane dynamics including simple os-
neous” tail downstreaniFig. 8@)], can be sustained as well. cillations around one or several steady states and complex
For intermediatekinetics (the upper/lower steady states oscillations in the case of two consecutive reactif®d0).
admit a Hopf bifurcatiopthe stationary patterns with spatial We considered there a case that may admit multiple homo-
oscillations around the upper/lower steady states can be su§eneous solutions and have shown that the CRD system be-
tained in a narrow domain above the amplification thresholthavior can be very complex, but in the limit of Pe
V=Vo.. These patterns coexist with stationary large-=[v,/D,— the emerging stationary spatial patterns can
amplitude axisymmetric patterns. be classified according to that of the related lumped mixed
Numerical simulations results confirm analytical predic-system ¥,=f,X,=g). That work motivated the present
tions by linear Stablllty analySiS. Nonlinear analySiS, WhiChstudy' in which the Simp|er kinetics emp|oyed allowed

follows the front motion by approximating its velocity, ac- for systematic analysis and the derivation of some analytical
counts for the stability of the stationary, whether spatiallyresylts.

periodic or other, patterns.

The results presented above were obtained with a learning
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