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Asymptotic solutions of stationary patterns in convection-reaction-diffusion systems

Olga Nekhamkina and Moshe Sheintuch
Department of Chemical Engineering, Technion-IIT, Haifa 32000, Israel

~Received 12 May 2003; published 18 September 2003!

We study and map the possible stationary patterns that emerge in a convection-reaction-diffusion~CRD!
system using a learning polynomial kinetics. We classify the patterns according to the kinetic model~oscilla-
tory, bistable, or intermediate!, the instability nature of the bounded system~convective or absolute!, the
applied boundary conditions and the system length. This analysis presents a unifying approach to various
pattern-inducing mechanisms such as DIFICI~differential flow induced chemical instability!, which predicts
moving patterns in systems with wide difference of convective rates, and differential capacity patterns, which
predicts stationary patterns in cross-flow reactors with a large heat capacity. Previous studies of CRD systems
have considered only oscillatory kinetics. Nonlinear analysis, which follows the front motion by approximating
its velocity, accounts for the stability of the stationary, whether spatially periodic or other, patterns. The most
dominant state is the large-amplitude stationary spatially periodic pattern. With oscillatory kinetics these
emerge in the convectively unstable domain above the amplification threshold. The domain of absolute insta-
bility, which is determined analytically for unbounded systems, is divided in the bounded system into two
subdomains with moving DIFICI waves or stationary patterns. With bistable kinetics the large-amplitude
stationary patterns can be sustained only within a narrow subdomain but other stationary patterns, that incor-
porate several fronts upstream and an ‘‘almost homogeneous’’ tail downstream, can be sustained as well. With
intermediate kinetics the large-amplitude axisymmetric stationary patterns may coexist with small-amplitude
stationary nonaxisymmetric patterns.

DOI: 10.1103/PhysRevE.68.036207 PACS number~s!: 05.45.2a, 82.40.Bj, 82.40.Ck
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I. INTRODUCTION

The search for chemical mechanisms that induce stat
ary patterns has been a subject of intensive investigation
the past three decades. Most mechanisms employ
activator-inhibitor (Y-X) interaction with a sufficiently wide
difference of their diffusive, convective, or capacity prope
ties. The appropriated two-variable one-dimensional mo
may be written in the following general form:

LeYt1V1Yz2D1Yzz5 f ~Y,X!,

Xt1V2Xz2D2Xzz5g~Y,X!, ~1!

subject to boundary conditions at the inlet (z50) and outlet
(z5L). The seminal work by Turing@1# showed that pat-
terns may emerge in reaction-diffusion systems~i.e., with
Vi50) whenf (Y,X) is autocatalytic and the inhibitor diffu
sivity D2 is sufficiently larger thanD1.

Pattern formation in convection-reaction-diffusion~CRD!
systems has been a subject of intensive investigation for
ten years. In a series of works Rovinsky and co-workers@2,3#
showed that this class can generatemoving patternswhen the
activator convection rate is sufficiently small when compa
with that of the inhibitor (V1!V2 with Le51 or V15V2
with Le@1 @3#! and termed this mechanism as different
flow induced chemical instability~DIFICI!. The DIFICI pat-
terns emerge in the convectively unstable media~to be ex-
plained below! and, contrary to the Turing case, the ratio
diffusion coefficients is not essential for this mechanism. S
vartsman and Sheintuch@4# simulated moving patterns fo
system~1! with V150,D250, and Le@1. Both Turing and
DIFICI instabilities arise from spatial decoupling of the a
1063-651X/2003/68~3!/036207~10!/$20.00 68 0362
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tivator and the inhibitor due to differential transport either
diffusion or convection, respectively.

Stationary patternformation mechanism in CRD system
has been suggested by Kuznetsovet al. @5# for a case of
equal convection rates and equal capacities, but different
fusivities, using a Brusselator kinetic model in a domain
parameters where the corresponding lumped system ad
an oscillatory behavior. The authors have demonstrated
stationary patterns emerge in the convectively unstable
main as the system response to the permanent perturba
introduced by the boundary conditions, which differ from t
steady state solutions. Almost simultaneously we have p
posed the same idea for a CRD system when the activ
capacity is sufficiently large (Le@1), while both the inhibi-
tor and activator flow at the same rate@6–10#; the inhibitor
diffusivity is not crucial for the establishment of these pa
terns and it can be set to zero. We suggest to name
phenomenon as the differential capacity pattern~DCP!.

The CRD models described above can be grouped
two main categories. In the first one the authors~Refs.@11–
13# following Ref. @5#! considered a case of equal convecti
velocities and capacities in a domain of parameters that
mits an oscillatory behavior in the corresponding lump
system (Yt5 f ,Xt5g,Le51); pattern selection depends the
on whether the system is absolutely or convectively unsta
while the type of bifurcations~sub-critical or supercritical!
depends on the kinetic model. In the second group the
thors considered a system with either different convect
velocities@14,15# or with different capacities of the compo
nents@6–8#. The employed methodology involved the co
struction of neutral curves which bound the domain of sta
homogeneous solutions. Note that for a first group the n
tral curve cannot be constructed using the velocity as a
©2003 The American Physical Society07-1
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O. NEKHAMKINA AND M. SHEINTUCH PHYSICAL REVIEW E 68, 036207 ~2003!
furcation parameter@see remark after Eq.~17! below#. In the
studies of the second group the effect of transition from
solute to convective instability has not been considered

The source of differences between the various mod
stems from different interests. The motivation for our stud
is the analysis of catalytic reactors, which are characteri
by a large heat capacity, by an immobile phase and by on
two fluid phases. In previous works we employed a cro
flow reactor model with a first-order Arrhenius kinetic
which is generic to studies of commercial reactors@16#. In
such kinetic models the lumped system may admit multi
steady state or oscillatory solutions with a variety of pha
plane dynamics including simple oscillations around one
several steady states and complex oscillations in the cas
two consecutive reactions@17#. The related distributed CRD
systems may exhibit a rich plethora of patterns includ
stationary spatially multiperiodic patterns or spatiotempo
regular or even chaotic patterns@9,10#. We have shown tha
the emerging stationary spatial patterns in the limit of largV
can be classified according to that of the related lum
mixed system. The variety of the system behaviors hinde
comprehensive analysis that elucidates the essential fea
of the model.

The purpose of this work is to derive asymptotic solutio
of CRD systems using linear and nonlinear analysis in or
to present a comprehensive analysis of possible patterns
that end, and in order to derive analytical results, we use h
a learning polynomial kinetics that admits oscillatory as w
as multiple solutions. Note that previous studies emplo
oscillatory kinetics only using the Brusselator model
Gray-Scott kinetics@5,11–15#. We have constructed neutra
stability curves for each of the homogeneous steady s
solutions of the corresponding unbounded system. To a
lyze the pattern selection the absolute instability thresho
are derived both for the unbounded and for the boun
systems. Our results show that bistable kinetics, which
common feature to many~especially exothermic and act
vated! reactions, may introduce a rich plethora of pattern
solutions.

The structure of this work is as follows: in the followin
section the mathematical model and its asymptotes are
mulated, linear analysis and bifurcation diagrams for an
bounded system are presented in Sec. III. Nonlinear ana
based on the examination of the front motion is conducte
Sec. IV, and in Sec. V numerical simulation of a bound
system are compared with analytical predictions.

II. MATHEMATICAL MODEL AND ITS ASYMPTOTES

In this section we will consider a two-variable on
dimensional model that describes the spatiotemporal sys
behavior and which will be referred to as the full part
differential equation~PDE! version of the system. Two rel
evant ordinary differential equations~ODE! asymptotes can
be easily derived from it: the first describes the tempo
behavior of the corresponding mixed system, i.e., lump
with respect to the space coordinate, while the second
scribes the steady state solutions of the distributed syste
03620
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We consider a full model with a learning polynomial k
netics:

Le
]Y

]t
1V

]Y

]z
2

]2Y

]z2
5 f ~Y,X!52Y31Y1X,

]X

]t
1V

]X

]z
5g~Y,X!5g~Xw2X!2bY, ~2!

subject to the Danckwerts’ boundary conditions

Yz~0!5V@Y~0!2Yin#, Yz~L !50, Xz~0!5Xin . ~3!

Note that the diffusion term is neglected in the second eq
tion, so that the ‘‘pure’’ Turing mechanism is ‘‘a priori’’
eliminated. A similar model, but withf (Y,X)5BDa(1
2X) h(Y) 2 gy(Y2Yw),g(Y,X) 5 Da(12X)h(Y) 2 gx(X
2Xw),h(Y)5exp@eY/(e1Y)#, where Da,B,gx ,gy , ande are
constants, was employed in our studies of DCP@6–8# and it
describes a cross-flow reactor where the feed is evenly
persed along the reactor. The commonality of behaviors
tween the cubic polynomial kinetics and the generic Arrhe
ius kinetics was demonstrated in a variety of reactor syste
such as the plug-flow reactor@18# or a catalytic system with
global coupling@19#. The Danckwerts’ boundary condition
are common in models of chemical reactors, and allow
system to converge to one of two common reactor asym
totes~a continuous stirred tank reactor, CSTR, or a plug fl
reactor, PFR!. In order to simplify the following analysis~to
reduce the types of a possible system behavior! we setXw
50.

The solutions of the right-hand side of Eqs.~2!
@ f (Ys ,Xs)5g(Ys ,Xs)50# are the asymptotic homogeneou
solutions of the problem. Forg50 only a single steady stat
(Ys05Xs050) exists. ForgÞ0 with b,g system~2! pos-
sesses two additional steady states:Ys656A(12a,Xs65
2aYs6 , wherea5b/g.

The lumped model.We begin our analysis by determinin
the behavior of the corresponding mixed system

Le
dY

dt
5 f ~X,Y!,

dX

dt
5g~X,Y!. ~4!

The Jacobian matrix of the linearized equations evaluate
a steady state is

J5S ~23Ys
211! 1

2b 2g D . ~5!

The corresponding phase planes defined by the null cu
f (X,Y)5g(X,Y)50 exhibit an oscillatory @Fig. 1~a!#, a
bistable@Fig. 1~b!#, or anintermediate@Fig. 1~c!# behavior. A
standard linear stability analysis shows that the null triv
state (Ys05Xs050) is stable in a range 1/Leg,1,a. The

two other steady states (Ys6 ,Xs6) are stable ifa,min$2
3

1Leg/3,1%. Note that increasing Le stabilizes the system;
the notation of catalytic reactors Le is the ratio of solid
fluid heat capacities~Lewis number!.
7-2



s
de

an
r

e

de

as
tem
es

n

criti-

wer
ution

l-
er

ca-

the

nt

-

ta

of

de-

ASYMPTOTIC SOLUTIONS OF STATIONARY PATTERNS . . . PHYSICAL REVIEW E 68, 036207 ~2003!
Stationary solutions in an unbounded system.To under-
stand the stationary patterns admitted by an unbounded
tem ~2! let us consider the corresponding system that
scribes the stationary spatially distributed solutions~i.e.,
]Y/]t5]X/]t50)

dX

dz
5

1

V
g~X,Y!,

dY

dz
5p,

dp

dz
52 f ~X,Y!1Vp. ~6!

Linear stability analysis applied to Eq.~6! reveals that a
bifurcation to a spatially periodic solutions occurs atV5V0
with a spatial wave numberk5k0:

k0
25Tr, V0

252 j 221
D

k0
2

, ~7!

where j ik ,Tr andD are the elements, trace, and determin
of the Jacobian matrix~5!. Thus, the critical parameters fo
the null steady state are

k00
2 512g, V00

2 5
g~a2g!

k00
2

. ~8!

The necessary condition for the bifurcation to exist is

g,min$a,1%.

For the other steady states the critical parameters are

k06
2 5k00

2 23~12a!, V06
2 5g1

2g~12a!

k06
2

~9!

and the necessary condition for the bifurcation to exist is

21g

3
,a,1.

The ~spatially! oscillatory branches, that bifurcate from th
homogeneous solutions at pointsV0, were traced numeri-
cally by means of the continuation and bifurcation co
AUTO @20# ~Fig. 2!.

FIG. 1. Typical phase planes showing thef (Y,X)50 ~solid line!
andg(Y,X)50 ~dashed lines! null curves for the cases of oscilla
tory ~a!, bistable~b!, and intermediate kinetics~c!. Xi mark theX
values at thei th front position,X* is the limit value. Dotted lines
with arrows show the oscillatory cycles. Dots mark the steady s
solutions.
03620
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The bifurcation diagrams discussed below will be used
a guide for the possible steady states of the full PDE sys
~2! but their stability will change. Thus, the stability featur
described below are specified for the form of Eqs.~6! and
denote stability with varyingz. We refer to a bifurcation to a
spatially oscillating solution as a Hopf bifurcation, eve
when it may occur from an unstable state.

For an oscillatory kinetics (a.1) only a single~null!
unstable steady state exists, and it admits a single super
cal Hopf bifurcation atV5V00 @H0, Fig. 2~a!#.

For abistablekinetics (a, 2
3 ) the bifurcation diagram is

composed of two branches of unstable upper and lo
steady states and a stable branch of the intermediate sol
which undergoes a supercritical Hopf bifurcation atV5V00
@point H0 in Fig. 2~b!#. This oscillatory branch looses stabi
ity at a certain pointS as it approaches the upper/low
steady states~we did not trace this branch further!.

In the intermediate domain (23 ,a,1) the unstable
upper/lower steady states undergo subcritical Hopf bifur
tions at V5V06 @point H6 , Fig. 2~c!#. The emanating
branches of asymmetric oscillations are unstable until
Torus bifurcation@points denoted byT at the upper oscilla-
tory branch, Fig. 2~c!# and become stable until the loop poi

te

FIG. 2. Typical bifurcation diagrams of stationary solutions
ODE system~6! for an oscillatory@~a!, a51.2], bistable@~b!, a
50.5], and intermediate kinetics@~c!, a50.8]. Solid and dashed
lines denote stable and unstable solutions, respectively. Points
note the Hopf bifurcation of the null (H0) and upper/lower (H6)
steady states, stars in~b! denote the loss of stabilityS, crosses in~c!
are branch points which coincide with the loop pointsB,L, and
triangules in~c!—the Torus bifurcationT. (Le5100,b50.2).
7-3
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O. NEKHAMKINA AND M. SHEINTUCH PHYSICAL REVIEW E 68, 036207 ~2003!
L, where they merge. The stable branch of the null soluti
as in the previous case, undergoes a supercritical Hopf b
cation. The emanating branch of axisymmetric stable os
latory solutions crosses the oscillatory branches that are
from the upper/lower steady states at a branch pointB which
coincides with the loop point@L, Fig. 2~c!#. All oscillatory
branches undergo period-doubling bifurcations, but we
not trace these branches.

III. LINEAR STABILITY ANALYSIS OF THE UNBOUNDED
SYSTEM

We will start with a linear analysis of unbounded syste
~2! in an infinitely long region. Denoting the deviation from
the basic steady state solutionUs5$Xs ,Ys% asu5$x,y%, we
obtain the following linearized equations:

Le
]y

]t
1V

]y

]z
2

]2y

]z2
5 j 11y1 j 12x,

]x

]t
1V

]x

]z
5 j 21y1 j 22x. ~10!

We suppose that the initial conditions are

yu t505 f 0~z!, xu t505g0~z!, ~11!

where the functionsf 0(z) and g0(z) decay rapidly forz
→`. We will search a solution of Eq.~10! in the form of the
normal modes

u~ t,z!5u0est1 ikz. ~12!

Following the standard approach, we can perform a Lapl
transform of system~10! with respect to the two variablesz
and t. The corresponding forward and backward transfor
are

ws,k~s,k!5E
0

`

e2stdtE
2`

`

u~ t,z!e2 ikzdz ~13!

and

u~ t,z!52
1

4p2E2 i`1s0

i`1s0
estdsE

2`

`

ws,ke
ikzdk, s05Res0 .

~14!

Here we assume that the perturbations grow not faster
exp(s0t), so that the integral in the right-hand side of Eq.~13!
converges, and in Eq.~14! the integration contour in thes
plane~parallel to the imaginary axis! is located to the right of
all singularities of the integrand. The integration contour
the k plane should be the imaginary axis. The compone
ws,k can be found from the transformed system~10! in the
following form:

ws,k5
h~s,k!

D~s,k!
. ~15!
03620
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Here the denominator is a characteristic function which
fines a dispersion relation of the system, while the numera
depends both on the system parameters and the initial pe
bations~their Laplace transforms!. To that end we assume
that the denominator has no singularities as a function
complex variabless,k.

Nontrivial solutions exist with a set of (s,k) obeying the
dispersion relationD(s,k)50:

Les21s@k22 j 112Lej 221 iVk~Le11!#1D2k2~V21 j 22!

1 iVk~k22Tr!50. ~16!

The bifurcation condition for instability Res50 with real
spatial wave numbers (Imk50) obeys the following rela-
tion:

Q2~ j 22k
22D!1 j 22k

2V2~Le21!2~k22 j 11!50,

Q5k22 j 112Lej 22. ~17!

Note that with Le51 the onset of instability does not depen
on the flow rate.

Neutral curves.For a case LeÞ1 we can construct neutra
curves using the velocityV as a bifurcation parameter:

V25
Q2~ j 22k

22D!

2 j 22~Le21!2~k22 j 11!k
2

. ~18!

The stability analysis of the homogeneous solution of
distributed system withV→0 agrees, of course, with th
corresponding results of the lumped model@Eqs. ~4!# dis-
cussed above.

For the null steady state anda.1 the neutral curve ac
quires a minimum@at Vm , km ; Fig. 3~a!# and traveling
waves can be excited only withV.Vm . When a,1 the
neutral curve is a monotonically increasing curve emana
at the critical pointkT5D/ j 225A(12a @Figs. 3~b!,~c!#. For
all V.0 the homogeneous state is unstable and can ex
traveling waves with a finitek.

The two other steady statesXs6 are stable for allV in a
domain 0,a,2/3. The neutral curve can be constructed
a domain 2/3,a,1 and it acquires a minimum in similarity
to the case of the null steady state witha.1 @Fig. 3~c!#.

FIG. 3. Typical neutral curves for the null~solid line! and the
upper/lower steady states~dashed line!. Open circles denote the
amplification threshold of stationary patterns@Eqs. ~8! and ~9!#.
Cases~a!–~c! and the corresponding parameters as in Fig. 2.
7-4
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The amplification threshold of stationary perturbation.
The condition for stationary patterns to emerge is

s50, Imk50. ~19!

Applying these conditions to the dispersion relation~16! we
obtain the critical parametersV0 ,k0, corresponding to the
amplification threshold of stationary perturbations. It ob
ously coincides with the Hopf bifurcation point of th
lumped system~6!, i.e., it is defined by Eq.~7!. The corre-
sponding critical points are marked on the neutral curves
circles ~Fig. 3!. The critical parameters as functions of k
netic parameters are shown in Fig. 4. For the null steady s
the bifurcation point exists in a rangeg,min(1,a). For the
other steady states the amplification threshold exists in a
main (21g)/3,a,1. Note that the wave number of th
null solution k00 is larger, while the critical velocity is
smaller than the corresponding values of the lower/up
steady states (k06 ,V06).

The type of instability. Now we have to determine
whether the instability is absolute or convective. An instab
ity is convectiveif a small perturbation propagates forwa
as a wave packet growing in size, but at any given locat
the disturbance from the steady state decays with timet
→` @21,22#. In contrast, the instability isabsolute if the

FIG. 4. Typical bifurcation diagrams in the (V,g) plane~upper
row! mapped by the following lines: The stationary pattern thre
old of the null and upper/lower states (V00,V06 , solid lines!. The
locus of minima of the neutral curve@Vm , dashed-dotted line in
~a!#. The absolute instability thresholds for an unbounded@Va ,
dashed line in~a!# and bounded@Va

b , dotted line in~a!# system.
Dotted lines in~b! and ~c! denote the boundaries of the oscillato
domains:V00

l andV00
u in ~b! andV06

u in ~c!. The boundaries marked
by dotted lines in~a!–~c! were computed numerically. The lowe
row presents the critical wave numbers of the stationary pattern
the null and upper/lower states (k00,k06). Large-amplitude spa-
tially periodic patterns exist in domain~iii ! or ~iii 8!, moving patterns
in ~iv!, small-amplitude patterns in~vi!, see text for other behaviors
~Parameters Le,a as in Fig. 2!.
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initial perturbation grows unbounded in time, at any fix
point in the laboratory frame. The effect of permanent p
turbations that are applied at the boundary of a boun
system is closely related with the type of instability of th
corresponding unbounded system~see discussion at the en
of this section!.

In order to analyze the type of instability of the un
bounded system~2! it is necessary to study the asymptot
behavior of the solutionu(t,z) defined by Eq.~14! at t
→`. We will follow an approach proposed in Ref.@21#. If
for a certainV each of the complexk-roots of the dispersion
relation D(s,k,V)50 with Res50 and varying Ims be-
longs to either the upper or lower complexk half planes, then
the system is stable@Fig. 5~a!#. If one of thek-roots crosses
the real axis, then the system is unstable~we can find a root
of dispersion relation with Res50 and RekÞ0). Note that
in an unstable system the perturbations are spatially am
fied (Imk of at least one of thek roots changes the sign!.

The instability is convective if we can construct thek
contour for the inner integral in Eq.~14! that will round the
singularities of the integrandws,k defined by Eq.~13! @Fig.
5~b!#. Such manipulation is possible if thek contour is not
pinched between two poles that approach the contour f
opposite sides and merge@Fig. 5~c!#. So the critical case
implies the existence of a double root of the dispersion re
tion @or a branch pointk5kb(sb)] that satisfies

D~sb ,kb!50,
dsb

dkb
50. ~20!

The critical velocityVa , corresponding to Resb50, defines
a transition from the convective to absolute instability. Sy
tem ~20! was solved numerically. The calculated values
Va are shown in Fig. 4~c! ~dashed lines!.

The analysis presented above was conducted for an
bounded system. It may be applied for a bounded syste
the reflection of exciting waves from the boundaries may
neglected~i.e., for time intervals that are smaller than th
time propagation of the a signal along the system!. In gen-
eral, the spectrum of wave numbers in a bounded syste
finite and is defined by boundary conditions. However,
sufficiently long systems the dispersion relation depends
intrinsic properties of the system itself and does not dep
on the applied BC~boundary conditions! @23#. The stability
of a bounded system reflects the stability of the correspo

-

or

FIG. 5. Schematic diagrams showing thek-roots behavior of the
dispersion relation~16! with critical Res50 for a case of a stable
~a!, absolutely unstable~b!, and convectively unstable~c! system.
7-5
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ing unbounded system as follows@23#: If the unbounded
system is absolutely unstable, the bounded one will be
bally unstable, while if the unbounded system is conv
tively unstable the bounded one can be either unstable
stable. Thus, in the bounded system withV above the ampli-
fication threshold of stationary perturbations@Eq. ~7!#, the
patterns will be stationary if the unbounded system is c
vectively unstable, while if the unbounded system is ab
lutely unstable, one can expect to find complex patterns c
posed of an upstream zone with several stationary waves
moving waves in the downstream zone.

IV. PHASE-PLANE ANALYSIS AND FRONT MOTION

To complement the linear analysis above and the stud
possible steady solutions~Fig. 2! we present below an analy
sis that follows the fronts inY and their dependence on th
interaction withX profile, capitalizing on the slow front mo
tion and the fastX adjustment. The analysis is valid for wid
separation of fronts, implyingg!1.

We start with the analysis of front inY for fixed X ~say
X5X0). That is possible in the domain whereF(Y,X0) is
bistable and we can find two pseudohomogeneous solut
away from the inlet and a front solution that separates
two stable steady states. Imagine the flow directed to
right and an ascending front separating low-Y downstream
~left! from high-Y upstream. The front positionZf is de-
scribed by (t5t/Le)

dZf /dt52C~Zf ,X0!

52C`,V50~X0!2~CV502C`,V50!1V, ~21!

where a positive front velocityC implies an expansion of the
high-Y domain.~In the general case we should allow for th
dependence ofC on X and on parameters!. The expression
incorporates three terms: the first is the front velocity in
unbounded system with no convection (C`,V50) and the
other two show corrections that we have introduced for t
velocity ~Ref. @18#!: The effect of convection is to push th
front at the fluid velocity. The other effect, due to bounda
conditions @the second term in Eq.~21!# decays exponen
tially with the distance and is ignored for now. For fixedX
5X0, the front velocityC`,V50(X0) is monotonically chang-
ing with X0 or any other parameter; for a cubic polynom
function F(Y,X0)52Y31Y1X0 and with smallX0 it is
C`,V50(X0).3X0 /A2. Thus,C`,V5050 only for a certain
set of parameters and typically we do not expect to fi
stable stationary fronts with or without convection. The s
tionary front, which exists ifC`,V505V, is simply a bound-
ary between fronts that propagate upstream or downstre

We turn now to study the effect of varyingX. To simplify
the analysis assume thatX is responding fast (Le@1) and its
balance is assumed to be in steady state. Its solution the

X5X~0!e2gz/V1Xw~12e2gz/V!2
b

V
e2gz/VE

0

z

egz* /VYdz* ,

~22!

and the system is described by
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Yt1VYz2Yzz52Y31Y1X~Y!5F̃~Y!. ~23!

To analyze the system we distinguish between several ca
The effect of convection is expressed in the flow rateV and
the effect of kinetics should be classified according to
possible homogeneous steady solution that is establis
away from the feed@ F̃(Ys)50#.

Oscillatory kinetics withg50. To simplify analysis even
further setg50 so thatX(z)5X(0)2(b/V)*0

zYdz* . This
is a typical behavior within the oscillatory domain. Now co
sider a family of fronts with positions atZf 1 ,Zf 2 , . . . and
the correspondingX values ofX1 ,X2 , . . . @Fig. 6~a!#; the
first front and the other odd ones are assumed to be asc
ing, i.e., separate a low-Y domain on the left from a high-Y
domain on the right, while the others~even! are descending
fronts. Their positions, ignoring the interaction between
fronts and interaction with the boundaries, are described

dZf 1 /dt52C„X~Zf 1!…1V,

X~Zf 1!5X15X02
b

VE0

Zf 1
Ydz* , ~24a!

dZf 2 /dt52C„X~Zf 2!…1V,

X~Zf 2!5X25X12
b

VEZf 1

Zf 2
Ydz* . ~24b!

Since for the first frontY,0 on the left domain,X increases
with z and the position of the first front is stable: perturbati
of the front position to the left encounters lowerX, which
encourage expansion of the cold~low-Y) domain, while per-
turbation to the right encounters an opposite behavior~recall
that X responds instantaneously!. The stability can be veri-
fied mathematically by examiningdC/dZf 1. Small changes
in V will induce small changes in the front position. A simila
analysis applies to the next front, showing that it is sta
over a wide domain ofV’s.

FIG. 6. Schematic profiles of the state variablesY(z) andX(z)
for a stable spatially patterned state~a!, corresponds to phase plane
shown in Figs. 1~a!,~b!, and a single front pattern~b!.
7-6
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To a first approximation, ignoring the effect of gradient
X on C, the fronts are stationary when

C~Xi !5V,

which allows us to calculate analyticallyXi values at the
front positions@Fig. 1~a! marks X1 ,X2 and Fig. 6~a!—the
correspondingZf i ]. For an ascending and descending fron
we find Xi 1152Xi for this symmetric cubic kinetics. Fo
smallV, asC is linear withX (C5kX0), the stationary front
position varies likeZf 1;V22kVX0. ~As V→0 the front
interaction with the boundary cannot be ignored and the
tern will collapse; note that the bifurcation to a pattern so
tion V00→0 asg→0). For largerV, however, the front ve-
locity that corresponds toX value at the limit point@X* , Fig.
1~a!# will be exceeded; yet even under these conditions
stationary front is sustained but now it moves as a ph
front rather than a trigger front~see Ref.@24# for the distinc-
tion between trigger and phase fronts!.

Thus, under certain conditions, and with Le@1, system
~2! sustain stationary-periodic patterns. ForX(0)50 the
problem is symmetric and the wavelength (Zf 22Zf 1
52Zf 1) could be computed analytically.

Oscillatory kinetics with0,g!1 and X050. The ap-
proximate analysis can be extended also forg.0 and it will
be useful to analyze the pattern on the (Y,X) plane @Fig.
1~a!#: The section upstream from the front is described
Eqs.~22! and~23! and the profile ofX is ascending~although
not linearly!; within the oscillatory domain, when the nu
state (Ys5Xs50) is the only homogeneous state, the fro
~first! will become stationary at a certain position whe
C„X(Zf 1)…5V, and we follow the same procedure as earl
in determiningZf 1 etc. AgainZf 22Zf 152Zf 1 is the wave-
length and we will find periodic stationary solutions for allV
exceeding a critical value.

Within the bistable domain@Fig. 1~b!# we always find two
stable homogeneous solutions with no fronts where the
tem, far from the entrance, asymptotically reaches one
these homogeneous steady solutions@Fig. 6~b!#, depending
on the inletY value. Aside from these we can find oth
solutions that incorporate fronts. The behavior should
classified into two situations.

~a! At low V, when theX value that sustain a stationar
front does not exceed the steady state value@X1(V),Xs ,
Fig. 1~b!# we can find stationary periodic solutions, identic
to those described above@see Fig. 6~a!#. With proper initial
conditions, however, we can also find solutions that incor
rate one, two, or several fronts upstream and a homogen
solution downstream@see simulated patterns in Fig. 8~a!, to
be discussed below#. Note that these conditions imply adja
cent fronts and we have ignored front interaction.

~b! At large V, whenX1(V).Xs , such fronts are washe
out of the reactor and the system approaches the asymp
cally homogeneous state: To argue that point consider
front in Fig. 6~b!; the behavior upstream from the front
qualitatively similar to that described above in Fig. 6~a!, but
the X profile does not attain the stationary conditionX
5X1. Consequently, the front propagates upstream and e
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the system. This analysis explains the domain of station
fronts at lowg and lowV @Fig. 3~a!#.

Excitable kinetics withg.0 and X0Þ0. A similar analy-
sis can be applied in this case, where the phase plane c
sponds to an excitable system. We will not pursue it here

V. NUMERICAL SIMULATIONS

We want to show now how the transition from a homog
neous solution to stationary patterns with increasingV is
affected by the type of instability~absolute or convective!,
by the BC and by the reactor length. To that end we p
bifurcation maps in the (V,g) plane for a set of parameter
that corresponds to oscillatory, bistable, or intermediate
netics. A typical bifurcation map was constructed by drawi
the following analytically computed lines:V5Vm(g)—the
locus of minima of the neutral curve,V00(g) and
V06(g)—the stationary pattern threshold for the null a
upper/lower states, respectively. Also drawn were several
merically computed lines such asVa(g) andVa

b(g)—the ab-
solute instability thresholds for an unbounded and boun
system, respectively.

We choose Le5100 and set the reactor length toL
5100 in most of simulations in order to resolve the structu
of the emerging patterns; several runs~marked in the text!
were conducted withL5200.

Numerical simulations of the full PDE system~2! were
carried out by means of an implicit finite difference schem
based on the method of fractional steps@25#.

Oscillatory kinetics(a.1). In this case the unbounde
system ~2! possesses a single homogeneous~null! steady
state, which is stable in a domain of low flow rates a
undergoes a supercritical bifurcation to moving waves w
increasingV.

The stationary patterns thresholdV00 is tangent toVm at
g.0.7; the corresponding wave numberk00 coincides with
km(g), it exceedskm in the domaing,0.7 @Fig. 3~a!# and is
smaller thankm(g) in the domaing.0.7. The absolute in-
stability threshold of an unbounded system (Va) exists in a
domain of smallg and is terminated at the intersection poi
with the Vm(g) line. For a bounded system the numerica
determinedVa

b line varies withL and with increasingL it
tends to the asymptotic valueVa of unbounded system@sys-
tem ~20!#. These lines divide the (V,g) plane~Fig. 4! to the
following domains and solutions~the same notation is em
ployed below and in Fig. 4!:

~i! The homogeneous solution is established belowVm(g)
and moving wave cannot be excited; ifYinÞ0 or XinÞ0
then the solution exhibits some adjustment at the inlet s
tion due to the boundary conditions.

~ii ! Pseudo homogeneous patterns are established foVm
,V,V0 and outside the absolute instability domain; it
similar to domain~i!, but transient moving waves can b
excited, before being gradually washed out of the syst
Note that numerically obtained critical velocitiesV0 practi-
cally coincide with analytical predictions for the unbound
system~8!.

~iii ! Stationary patterns@similar to Fig. 7~c!# are estab-
lished for most of the domain withV.max@V0,Va

b#. The cal-
7-7
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culated spatial amplitudes and the periods of oscillations
in a very good agreement with the corresponding values
tained by means of the continuation approach@20#. Note that
for large V the dispersion term becomes insignificant w
respect to convective transport, and the period of spatial
cillation varies linearly withV. ~The space coordinate can b
rescaled asz/V and the dispersion term in the transform
coordinate is multiplied by 1/V2).

~iv! Propagating waves with a narrow ‘‘boundary laye
near the inlet@Fig. 7~a!# are excited forVm,V,V0,Va

b

~i.e., within the absolute instability domain!. These waves are
exactly the self-sustained DIFICI patterns. For relative
small deviationsV2Vm the calculated wave velocityCw and
the spatial wave numberk are in a good agreement wit
analytical predictions for the unbounded system, using
parameters at the minimum of the neutral curvek
.km ,Cw5vm /km).

~v! For V0,V,Va
b the system behavior is highly sens

tive to the applied BC showing either moving or stationa
waves: For small deviations of the boundary values (Xin or
Yin) from the null steady state the system exhibits mov
waves, which can be significantly affected~modulated! by
BC forming a zigzag structure@Fig. 7~b!#. With relatively
large ~yet, fixed! perturbations at the boundaries the syst
exhibits stationary patterns composed of spatially perio
waves over most of the reactor@Fig. 7~c!#; the applied BC

FIG. 7. Typical solutions presented as a spatiotemporal g
scale pattern ofY for the case of the oscillatory kinetics:~a! moving
waves@domain ~iv! in Fig. 4~a!#, ~b! zigzag pattern@imposed by
small perturbations of BC, domain~v! in Fig. 4#; also formed in
domain ~v! are ~c! stationary patterns~large perturbation of BC!,
and ~d! transient patterns~in response to a change of BC!. a
51.2,b50.36; V50.65~a!, 0.85~b–d!. In ~d! the coordinates (t,z)
are rescaled for convenience.
03620
re
b-

s-

e

g

ic

affect only the length of the boundary layer. With appropria
choice of initial conditions we can induce complicated p
terns composed of two zones with slightly oscillating quas
tationary patterns in the upstream zone and moving wave
the downstream zone@Fig. 7~d!#. The boundary between th
wave packets is drifting and over a long time one of the
~depending on the BC! suppresses the other.

With time-dependent BC it is possible to transform t
sustained stationary patterns into moving ones and vice v
~let during a certain time interval we imposeXin or Yin that
slightly deviate fromXs , Ys , then the system will exhibit
zigzag patterns; if in the following time interval we wi
chooseXin or Yin that differ significantly fromXs , Ys , then
the patterns will be transformed into stationary ones@Fig.
7~d!#. Moreover, with appropriate stepwise changes in BC
is possible to generate complicated patterns composed o
ternating stationary, oscillatory, and moving wave zon
propagating in opposite directions.

With increasingL ~or varying a) we expect to find a
subdomain adjusted to the lower boundary@V0(g)# for
which stationary patterns cannot be sustained at all, indep
dent of the BC. However such simulations are very tim
consuming and are out of the scope of the present study

Bistable kinetics(a,2/3). In this case the unbounde
system~2! possesses three homogeneous steady states
upper and lower are stable everywhere and are glob
stable for most of the domain, while the null solution
unstable for allV>0. The only other stable state is a statio
ary pattern which exists for a bounded system between
lower @V00

l , close toV00, a lower dotted line in Fig. 4~b!#
and the upper boundaries@V00

u , an upper dotted line in Fig
4~b!, corresponds to stateS in Fig. 2~b!#; these boundaries
were calculated by direct simulations. Note that while t
null steady state is absolutely unstable in the unbounded
tem ~for V,Va0), the bounded system is convectively u
stable only due to the existence of the other stable solutio
These form the following domains@Fig. 4~b!# which are
marked in similarity to those of the previous case:

~ii 8! For V,V00
l andV.V00

u the system attains one of th
pseudohomogeneous steady states. Axisymmetric waves
be excited during a transient process, but they are washed
upstream with smallV,g and downstream for largeV,g.

~iii 8! Stationary patterns with spatially periodic or oth
structures can be sustained forV00

l ,V,V00
u . With appropri-

ate choice of the initial conditions it is possible to desi
patterns composed of several stationary fronts in the
stream section and one of the stable steady state in the d
stream zone@Fig. 8~a!#; these were discussed in the prece
ing section.

In a relatively narrow sub-domain@V00,V,V00
l , not

marked in Fig. 4~b!# the system attains a pseudohomog
neous state, similarly to domain ii, but during a transie
process the excited moving waves are transformed into
tially oscillatory patterns which, in turn, are eventually te
minated@Fig. 8~b!#. Probably the wave length becomes to
small to counteract the interaction between the nearest fro

Intermediate kinetics(2/3,a,1). This case is the mos
complex among those considered and we found two kind

y-
7-8



ta
a
a

o

bl

-
og
co

-
th

el
d

-
la

e

is

B
al
ta
it

se
l do-
t-
d as

wn-

the
-
c
s on
d-
-

t-
e

o-
th
ries
ze.
al
sus-
a
o-
t in-

ra

o

et-
ary
-

r-

ASYMPTOTIC SOLUTIONS OF STATIONARY PATTERNS . . . PHYSICAL REVIEW E 68, 036207 ~2003!
spatially periodic solutions~axisymmetric or not! as well as
the pseudohomogeneous solutions. Of the three steady s
the null solution, as in the previous case, is unstable for
V.0, while the upper/lower solutions loose stability via
Hopf bifurcation and become convectively unstable atV
.Vm6 . The thresholds of stationary patterns exist in a d
main g,a for the null steady state and in a domaing
,3a22 for the upper/lower solutions withV00,V06 @Fig.
4~c!#.

As in the previous case we found domain~ii 8!, where the
system admits a pseudohomogeneous solution and can
hibit transient waves of axisymmetric amplitudes. Sta
spatial pattern states are sustained withV.V00. In domain
~iii 8! (V00,V,V06) complex ‘‘designer’’ patterns, com
posed of several stationary fronts upstream and a hom
neous steady state downstream can be sustained. They
ist with stable pseudohomogeneous solutions. In domain~iii !
~above region vi, see below! stationary spatially periodic pat
terns are the only stable solutions of the system. Note
contrary to the case of bistable kinetics, domains~iii ! and
~iii 8! have no upper boundaries with increasingV.

The more intricate system behavior takes place in a r
tively narrow domain~vi! above the amplification threshol
of nonaxisymmetric patternsV06 . Just aboveV06 with V
,V06

u @dotted line in Fig. 4~c!# the system exhibits station
ary spatially periodic patterns with small-amplitude oscil
tions around the corresponding steady states@Fig. 9~a!#. With
increasingV the spatial periodicity is lost and the amplitud
of the oscillations becomes space dependent@grows down-
stream, Fig. 9~b!#. With the following increasingV the pat-
tern selection becomes sensitive to the reactor lengthL: For
moderateL (<100 withg50.167,a50.8) and with increas-
ing V, the zone of small-amplitude spatial oscillations
shifted downstream and for very largeV we obtained
pseudohomogeneous solution, defined by the applied
With increasingL the stationary patterns of varying spati
amplitude around upper/lower steady state become uns
and switch in the downstream zone into moving waves w

FIG. 8. Typical spatiotemporal solutions presented as a g
scale pattern ofY for the bistable kinetics case showing~a! regular
stationary patterns@domain~iii 8! in Fig. 4~b!# and~b! transient pro-
cess in a subdomain below it leading to a gradual termination
stationary waves.a50.5,b50.2; V50.4 ~a!, 0.375~b!.
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large-amplitude axisymmetric spatial oscillations. The
waves propagate upstream and conquer the whole spatia
main forming eventually stationary spatially periodic pa
terns of the same type as when the null steady state is use
the initial condition@the profile shown in Fig. 9~c! illustrates
the transition process: large amplitude waves at the do
stream zone propagate upstream#.

VI. CONCLUDING REMARKS

The mechanism of stationary patterns formation in
CRD ~convection-reaction-diffusion! system with large sepa
ration of time scales (Le@1) is analyzed for a learning cubi
kinetics. The study revealed that pattern selection depend
kinetic model~the type of the phase plane of the correspon
ing mixed model!, the type of instability, the applied bound
ary conditions, and the reactor length.

For oscillatory kinetics stationary spatially periodic pa
terns emerge in theconvectivelyunstable domain above th
amplification thresholdV5V00. The domain ofabsolutein-
stability is divided, in the bounded system, into two subd
mains: one with moving DIFICI waves and another wi
stationary patterns. The boundary between the two va
with the boundary conditions imposed and the system si

For bistable kinetics the stationary patterns with spati
oscillations around an intermediate steady state can be
tained within its convectively instability domain in
bounded region far from the basins of attraction of the h
mogeneous stable states. Other stationary patterns, tha

y-

f

FIG. 9. Typical solutions for the case of the intermediate kin
ics in the domain of coexistence of different types of station
patterns@~vi!, Fig. 4~c!# showing~a! a small-amplitude nonaxisym
metric stationary pattern,~b! a similar profile with an increasing
downstream-amplitude, and~c! a transient process leading to fo
mation of large-amplitude axisymmetric patterns.a50.8,b50.2;
V51 ~a!, 1.1 ~b,c!; L5100 ~a,b!, 200 ~c!.
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corporate several fronts upstream and an ‘‘almost homo
neous’’ tail downstream@Fig. 8~a!#, can be sustained as we

For intermediatekinetics ~the upper/lower steady state
admit a Hopf bifurcation! the stationary patterns with spati
oscillations around the upper/lower steady states can be
tained in a narrow domain above the amplification thresh
V5V06 . These patterns coexist with stationary larg
amplitude axisymmetric patterns.

Numerical simulations results confirm analytical pred
tions by linear stability analysis. Nonlinear analysis, whi
follows the front motion by approximating its velocity, ac
counts for the stability of the stationary, whether spatia
periodic or other, patterns.

The results presented above were obtained with a lear
kinetics for a range of parameters when the correspond
lumped system exhibits oscillatory or bistable kinetics. P
vious studies of CRD systems@5,11–15#. have considered
only oscillatory kinetics. In our previous works@6–8# we
considered a cross-flow reactor model with a first-or
Arrhenius kinetics. In such a kinetic model the lumped s
tem may admit multiple steady states or oscillatory solutio
g.

,

nd

E

m

k-

tt
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with a variety of phase-plane dynamics including simple
cillations around one or several steady states and com
oscillations in the case of two consecutive reactions@9,10#.
We considered there a case that may admit multiple ho
geneous solutions and have shown that the CRD system
havior can be very complex, but in the limit of Pi
5LVi /Di→` the emerging stationary spatial patterns c
be classified according to that of the related lumped mix
system (Yz5 f ,Xz5g). That work motivated the presen
study, in which the simpler kinetics employed allowe
for systematic analysis and the derivation of some analyt
results.
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